Phase Transitions and Minimal Hypersurfaces in Hyperbolic Space
نویسنده
چکیده
The purpose of this paper is to investigate the Cahn-Hillard approximation for entire minimal hypersurfaces in the hyperbolic space. Combining comparison principles with minimization and blow-up arguments, we prove existence results for entire local minimizers with prescribed behaviour at infinity. Then, we study the limit as the length scale tends to zero through a Γ-convergence analysis, obtaining existence of entire minimal hypersurfaces with prescribed boundary at infinity. In particular, we recover some existence results proved in [3] and [21] using geometric measure theory.
منابع مشابه
Minimal hypersurfaces in H × R, total curvature and index
In this paper, we consider minimal hypersurfaces in the product space Hn × R. We begin by studying examples of rotation hypersurfaces and hypersurfaces invariant under hyperbolic translations. We then consider minimal hypersurfaces with finite total curvature. This assumption implies that the corresponding curvature goes to zero uniformly at infinity. We show that surfaces with finite total int...
متن کامل$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
متن کاملA ug 2 00 8 Minimal hypersurfaces in H n × R , total curvature and index
In this paper, we consider minimal hypersurfaces in the product space Hn×R. We study the relation between the notions of finite total curvature and index of the stability operator. We study examples of rotation hypersurfaces and hypersurfaces invariant under hyperbolic translations; they serve as counterexamples and are useful barriers for many geometric problems.1
متن کامل$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کامل